Introduction
The past decades witnessed dramatic improvement of overall survival rate of mantle cell lymphoma (MCL) patients by constant efforts in developing novel therapeutic strategies that include ibrutinib and venetoclax. Nevertheless, resistance is still a major challenge in refractory/relapsed MCL patients. Chromosomal translocation t(11:14)(q13:q32) of the cyclin D1 (CCND1) gene is the hallmark of MCL, which leads to overexpression of cyclin D1. This overexpression promotes aberrant cell cycle progression by activating CDK4/6. Abemaciclib is a selective CDK4/6 inhibitor used as a clinical treatment of breast cancer and has been shown to be effective in preclinical human MCL xenograft models. It has also been used in a phase II clinical trial as a single agent among refractory/relapsed MCL patients with an objective response rate of 35.7%. In this preclinical study, we aim to evaluate the benefit of a combinational therapeutic strategy using abemaciclib with other molecular targeting agents among MCL patients with therapeutic resistance.
Methods
Cytotoxic efficacy of abemaciclib as a single agent and in combination with other drugs on different MCL cell lines and primary lymphoma cells from MCL patients with or without resistance was used as a key criterion for screening beneficial therapeutic strategies. Cell apoptosis and cell cycle arrest assays were conducted to further evaluate those effective combinations. Western blot was performed to investigate the mechanism of action of the combinations. Finally, the efficacy of abemaciclib alone or in combination were assessed in ibrutinib-resistant or venetoclax-resistant MCL PDX models in vivo.
Results
Our preliminary data showed that all MCL cell lines involved in this study were highly sensitive to abemaciclib treatment with IC50 values ranging from 50 nM to 1 µM. Further investigation of abemaciclib cytotoxicity on ibrutinib and/or venetoclax resistant MCL cell lines showed effective inhibition with a higher IC50 values ranging from 5 µM to 10 µM. More importantly, abemaciclib had potent efficacy on cells from primary MCL patients as well as from patients with acquired ibrutinib resistance. Our recent findings revealed that the addition of PI3K inhibitor TGR-1202 significantly enhanced cytotoxicity of abemaciclib in both sensitive and resistant MCL cell lines. Abemaciclib significantly inhibited phosphorylation of Rb1, the active form of the protein, in 4 different MCL cell lines. The active Rb1 maintains the cell in the G1 phase, preventing progression through the cell cycle and acting as a growth suppressor. The result suggests that CDK4/6 inhibition with abemaciclib disrupts CDK4/6 suppressive activity towards pRb-E2F and induce cell cycle arrest in the MCL cells. Interestingly, abemaciclib somehow interrupted phosphorylation of Chk1, which is continuously phosphorylated and hence activated in the MCL cell lines. Inhibiting activation of Chk1 by abemaciclib may induce cell death via unmonitored and accumulated DNA damage. The efficacy of abemaciclib in combination with Bcl-2 or BTK inhibitors in MCL cell lines and isolated cells from MCL patients are ongoing. These data suggest that abemaciclib in combination with other therapeutic drugs could be beneficial in targeting therapeutic resistant MCL cells.
Conclusions
Abemaciclib showed impressive therapeutic potency on both MCL cell lines and isolated primary cells from MCL patients, which is likely due to the predominant contribution of cyclin D1-CDK4/6 pathway to malignancy. Other agents, such as PI3K inhibitors, can sensitize abemaciclib in therapeutic resistant MCL cells. Thus, an abemaciclib based multi-drug combinational strategy may be a promising therapy for refractory/relapsed MCL patients in the near future.
Wang:Beijing Medical Award Foundation: Honoraria; Lu Daopei Medical Group: Honoraria; Kite Pharma: Consultancy, Other: Travel, accommodation, expenses, Research Funding; Pulse Biosciences: Consultancy; Loxo Oncology: Consultancy, Research Funding; Targeted Oncology: Honoraria; OMI: Honoraria, Other: Travel, accommodation, expenses; Nobel Insights: Consultancy; Guidepoint Global: Consultancy; Dava Oncology: Honoraria; Verastem: Research Funding; Molecular Templates: Research Funding; OncLive: Honoraria; Celgene: Consultancy, Other: Travel, accommodation, expenses, Research Funding; AstraZeneca: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Oncternal: Consultancy, Research Funding; Juno: Consultancy, Research Funding; BioInvent: Research Funding; VelosBio: Research Funding; Acerta Pharma: Research Funding; InnoCare: Consultancy; MoreHealth: Consultancy; Pharmacyclics: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Janssen: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding.
Author notes
Asterisk with author names denotes non-ASH members.